

ifip Cliff Notes for Session 1 Presentations

Missy Cummings

- Experimental research involving 4 tests, 3 Tesla Model 3s vehicles on [name test track]
- **Question**: How well do Level 2+ vehicles alert distracted drivers under various conditions?
- Results run counter to Tesla's claim that running on autopilot is safer than not doing so

Marjory Blumenthal

- Issues for assessing and communicating about AV safety Level 4 focus
- Builds on 2018 measure framework: https://www.rand.org/pubs/research_reports/RR2662.html
- Three principal approaches Measurement, processes, thresholds (quantitative or qualitative)
- Communicating about AV safety

Ben Shneiderman

- Aim: To "reframe thinking" with regard to human-machine interaction
- Human-centered AI 6 ingredients
- 2D HCAI framework RST systems require highly-human, highly automated control
- Governance structures for 2D HCAI

- Many good questions and comments wrt all 3 presentations
 - Directly to a speaker by a participant
 - Entered in Chat
- As with discussions at our in-person workshops
 - Many more questions/comments than the allotted time permits
 - Indeed, in overtime, several questions were asked a speaker after he/she had left the meeting
 - Please use email or other means to follow-up with new or unanswered questions of a speaker
- Thank you, Session 1 Chair Kevin Driscoll!
 - Very smooth and seamless management of both speaker intros and the subsequent discussion

ifip Relevance to Workshop Goal

- Debate and provide arguments on all sides of the following hypothesis:
 - L3 vehicles cannot be made acceptably safe with current technology and practices
- Missy Some experimental results that support "cannot" (for L2+)
- Marjory Measure thresholds aimed at quantifying "acceptably safe"
- Ben L3 vehicles not in high human, high auto RST quadrant support
- My two cents
 - Regarding in-vehicle control of a road vehicle, human vs. autonomous control is 1-dimensional
 - In case there's a proper mix of the two, as in L3
 - Successful handovers from one to the other become problematic
 - In turn, acceptably safe operation can be compromised
 - Experience with aircraft flight control systems is similar
 - Many accidents where mixed mode operation was to blame
 - Most recent example MCAS problem with B737 MAX

Autonomous Vehicle Industry Perspectives

Technical Safety Challenges

- Safety assurance vs. certification
- Autonomy levels vs. V&V and certification costs
- V&V of AI/ML based functions
 - Perception, object detection, path planning, and prediction

Approaches to Quantifiable and Acceptable Safety:

- Safety Performance Indicators (SPI) for quantitative safety claims
- Testability, dual redundancy, HW/SW/sensor diversity, high availability at mission critical times
- Safety watchdogs, safety kernels, safety co-pilots
 - Independent simplified invariant checkers (e.g., collision, instability, lane departure, speed limit)
- Reaction and recovery
 - Fail-safe mechanisms, graceful degradation, raise alerts, pull over to road-side

=> L3+ AD: An evolutionary process starting with success in simpler operational design domains, requiring new standards, new technologies for V&V and certification, and coopetition between industry and academia.

Rapporteur's notes on 1/31/21 IVDS session

How do we know / can we assure that an AV is safe?

- Lorenzo: with formal statistical methods incorporating conservative Bayesian inference (CBI) and "bootstrapping" confidence based on operation without mishaps
- Sanjit: with simulation-based falsification, scenario simulation in combination with verification
- John: by building systems that employ generative modeling of the world and use them to detect surprise and respond

Comment: deployment of AVs at present seems to be made tolerable by limiting the operational environment. Not sure these talks really addressed this aspect as much as they might; perhaps an area for further refinement of models.

- What do they have to say about the workshop hypothesis: Resolved: Level 3 autonomous vehicles cannot be made acceptably safe with current technology and practices.
 - It seems that a successful L3 system has to detect when it needs to handoff control to the driver
 - This seems like detection of surprise
 - So does the ability to build a proper L3 system actually imply we can build an L5 systems? Or perhaps we can't build an L3 system until we already built an L5 system?

First IFIP Workshop on Intelligent Vehicle Dependability & Security: **Path Forward**

Jan 31, 2021

Workshop Chair

Dr. Jay Lala Sr. Principal Engineering Fellow Raytheon Technologies San Diego, CA

Stakeholder Engagement

- Industry: technology suppliers to automotive industry
- Academia
- Non-profits & government consultants
- Research institutions
- Standards influencers/shapers
- Automotive industry
- Regulatory and governance bodies

Technology & Societal Issues

- We know how to built fault-tolerant systems
 - We have been doing it for 40+ years for many different domains
 - Affordable fail-safe (not fail-stop) autonomous vehicle control systems are technically feasible
- Challenge is the adoption and implementation by automotive industry
 - Needs government & regulatory push, consumer pull and nudging by all other stakeholders
 - Last resort: accidents and lawsuits
- Application of Machine Learning algorithms still has ways to go before being deployed in safety-critical systems
- We don't know how to build cyber-resilient / intrusion-tolerant systems to the same degree

Thank You!!!

- Speakers, Panelists and Session Chairs
- WG10.4 Friends and Guests
- My colleagues on the Organizing Committee: John, Carl, Chuck, and Homa